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Abstract: Biophotonic multimodal imaging techniques provide deep insights into biological
samples such as cells or tissues. However, the measurement time increases dramatically when
high-resolution multimodal images (MM) are required. To address this challenge, mathematical
methods can be used to shorten the acquisition time for such high-quality images. In this
research, we compared standard methods, e.g., the median filter method and the phase retrieval
method via the Gerchberg-Saxton algorithm with artificial intelligence (AI) based methods using
MM images of head and neck tissues. The Al methods include two approaches: the first one
is a transfer learning-based technique that uses the pre-trained network DnCNN. The second
approach is the training of networks using augmented head and neck MM images. In this manner,
we compared the Noise2Noise network, the MIRNet network, and our deep learning network
namely incSRCNN, which is derived from the super-resolution convolutional neural network and
inspired by the inception network. These methods reconstruct improved images using measured
low-quality (LQ) images, which were measured in approximately 2 seconds. The evaluation was
performed on artificial LQ images generated by degrading high-quality (HQ) images measured in
8 seconds using Poisson noise. The results showed the potential of using deep learning on these
multimodal images to improve the data quality and reduce the acquisition time. Our proposed
network has the advantage of having a simple architecture compared with similar-performing but
highly parametrized networks DnCNN, MIRNet, and Noise2Noise.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Medical imaging is an important and active area of research with the potential to significantly
improve disease diagnosis and patient treatment. For decades, medical imaging modalities, e.g.,
X-ray [1], ultrasound imaging [2—4], and computerized tomography (CT) [1,5], have served as
important tools to assist physicians in making their diagnostic decisions. Although several new
especially optical imaging technologies have been developed in the last decades, their adoption
in healthcare systems is still minimal. Nonlinear optical techniques, e.g., coherent anti-Stokes
Raman scattering (CARS) [6], two-photon excited fluorescence (TPEF) [7], and second-harmonic
generation (SHG) [8], and linear optics techniques, e.g., fluorescence lifetime imaging (FLIM) [9]
are capable of measuring detailed information about the chemical composition and morphology
of tissue sections with high spatial resolution and in a non-altering manner. In particular,
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the simultaneous combination of two or more of these optical spectroscopic methods, called
multimodal imaging (MM), allows for maximizing the obtained chemical and morphological
information of the measured tissues [10—15]. For instance, Vogler et al. [8] presented a
microscopic experiment that combines three nonlinear optical techniques; CARS, TPEF, and
SHG, and shows how different kinds of molecules and different contrast mechanisms can be
obtained in one image measurement. In detail, CARS measurements explore the molecular
distribution like proteins and lipids, SHG measurements highlight collagen fiber distribution in
the sample and TPEF measurements identify specific molecules like keratin and NADP(H). The
combination of these three modalities is considered a label-free and non-destructive approach that
is very useful for in vivo studies [16]. The multimodal imaging approach provides high-quality
(HQ) images, but the acquisition of such high-quality images requires a relatively long acquisition
process in comparison with low-quality images because photon shot noise is the prominent
noise source in nonlinear imaging techniques. Mechanical methods such as using a faster motor
[17] or time-stretching techniques [18] have shown great promise in improving the speed and
performance of multimodal imaging systems, however, these methods have certain limitations.
For instance, although using a faster motor can reduce scan times it may generate more heat
which can potentially degrade the quality of the image. On the other hand, time-stretching
techniques can increase the time resolution of imaging systems, but they may also introduce
noise and distortions to the image. Additionally, the imaging system in this study uses laser
scanning and only shifts the sample when jumping from tile to tile, so the measurement time
is limited by the detector, not the scanning speed. Hence, the faster MM imaging required for
real-time monitoring leads to an increase in the noise level of the images, which degrades their
quality and affects the identification of tissues or their associated diseases, or abnormalities.

In addition to experimentally acquiring HQ images by increasing the acquisition time, image
denoising is a fundamental preprocessing technique that can remove noise from images but
may result in the loss of relevant information [19-21]. Consequently, the trade-off between fast
imaging and a suitable denoising method needs to be balanced and optimized for an effective
diagnostic imaging tool. The denoising algorithms vary from basic digital image filters to
iterative reconstruction techniques. Therefore, choosing a suitable denoising method is not
simple, and the restored images should maintain the following properties [20]. First, the details
and edges that are critical to detect malignant tissue should be preserved. This means that the
denoising algorithms should not produce artifacts and the recovered images should be similar to
the original image. In addition, the algorithm should be computationally efficient and have low
complexity, which is a prerequisite in medical applications that require immediate results. Finally,
the denoising algorithms should not depend on vast amounts of data, which is not practical or
readily accessible in medical imaging.

Apart from the standard image denoising methods, deep learning featured a high potential for
denoising and showed outstanding performance, especially in the processing of natural images and
various medical imaging techniques, e.g., ultrasound imaging [2—4], CT scan [1,5], fluorescence
microscopy [22], and CARS endoscopy [6]. Therefore, we evaluated deep learning methods on
the multimodal images that comprise CARS, TPEF, and SHG modalities and compared them
with the following standard techniques; the median filter (MF) method and the phase retrieval
method via Gerchberg-Saxton (GS) [23-27]. An example of a MM image is visualized in Fig. 1,
where the CARS, TPEF, and SHG modalities are represented as the red, green, and blue channels,
respectively. In this manuscript, we used two deep learning approaches. The first approach is a
transfer learning-based method [28] in which we used the pre-trained network, namely DnCNN
[29] directly to reconstruct the improved images. The second approach is to train a network using
augmented neck and tissue MM images. In this context, we used two well-known architectures;
the Noise2Noise (N2N) [30] and the MIRNet [31,32] architectures, in addition to our deep
learning network that we referred to as incSRCNN. The incSRCNN network consists of a simple
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architecture derived from the super-resolution convolution neural network (SRCNN) [33,34] with
a small trick in the first layer that was inspired by the inception network [35]. In this manuscript,
we briefly explain all the methods at the beginning and then describe the data and workflow. We
then discuss the reconstruction of synthetic and experimental low-quality images using the GS
algorithm, the MF method, the DnCNN, N2N, MIRNet, and incSRCNN networks. Afterward,
a generalizability section is presented with two different analyses. Finally, we summarize our
results in the conclusion section.

Multimodal
image

3 modalities
——-

50 pm 50 m 50 pm

50 pm

Fig. 1. An example of a multimodal image consisting of the three modalities CARS of
the CH2 stretching vibration at 2850 cm-1, TPEF, and SHG, as the red, green, and blue
channels, respectively, is given.

2. Method
2.1. Direct methods: median filter, GS algorithm, and pre-trained DnCNN network

This section briefly explains the implemented methods, grouped into a description of the classical
methods and deep learning methods. First, the median filter with a 3 X 3 kernel size is used by
computing the median value of the input image under the kernel window [36]. Then, the phase
retrieval problem is implemented since it is applied to many phase-based denoising problems
[37-40]. Several well-known phase retrieval algorithms exist, e.g., hybrid input-output (HIO)
and Gerchberg-Saxton (GS). We focused on applying GS [23,25] to the MM images since most
of the other error reduction-based techniques represent a derived version of the GS algorithm.
Briefly, GS is the recovery of the phase using the measured image and the source object. It is
considered an error-reduction algorithm that iteratively calculates the error until it converges.
The GS algorithm is shown in Fig. 2, and it is applied independently on each channel where the
phase and the modified amplitudes are determined iteratively, enabling image reconstruction. Its
input represents both the amplitudes of the sampled image +/x and a Gaussian estimation of the
diffraction plane intensity X. First, an initial phase ¢g in the object plane is used by generating
randomly uniform numbers between —rt and ;. At iteration k, the initial field in the object plane
is calculated using Eq. (1).
zk = Vxexp(ig-1) (1
The phase distribution in the target plane ¢y is then calculated via the fast Fourier transform
(FFT), as shown in Eq. (2).
¢x = arg(FFT(z)) 2)

Equation (3) combines the phase distribution in the target plane with the target intensity VX
and finally, the phase in the object plane ¢y is recovered by using Eq. (4).

Ay = VX exp(igy) 3)

o = arg(FFT(Ay)). “

Apart from the classical methods used in image denoising, artificial intelligence (AI) based
methods have widely been used for restoring images, especially in computer vision and medical



Research Article Vol. 14, No. 7/1 Jul 2023/ Biomedical Optics Express 3262 |

Biomedical Optics EXPRESS -~

-
Initial step Diffraction Reconstruction after k
Image x iteration

Random
+ phase
Po

50 um 50 ym

Fig. 2. The workflow of the GS algorithm. First, the LQ image with a random phase was
fed to the algorithm, and after k iteration, the high-quality image was constructed. The GS
algorithm depends on an estimation of the source object, which is unknown, and therefore
Gaussian estimation was used.

imaging, e.g., X-ray, CT imaging, and ultrasound scans. In artificial intelligence, high-quality
images, which represent improved images in terms of signal-to-noise ratio (SNR), can be acquired
by transfer learning or directly constructing deep learning techniques. Transfer learning [28]
consists of using knowledge obtained from one task and transferring it to another related task. The
direct deep learning method, on the other hand, trains a neural network with specific architecture
using the available data, optimizing the parameter during training. In this manuscript, we
evaluated both approaches on the MM images.

First, the pre-trained neural network, the denoising convolutional neural network (DnCNN),
was used as a transfer learning tool. DnCNN was trained on natural images to correct noise
and artifacts in corrupted images [29]. Briefly, DnCNN is a pre-trained network that outputs
the residual image, i.e., the difference between the noisy observation and the latent clean image,
instead of predicting the denoised image. The architecture of this network is an adapted version
of the VGG network [41] that is suitable for the image denoising task. Formally, the averaged
mean squared error calculated in Eq. (5) between the desired residual images and estimated ones
from noisy input

1 N
16) = 5 > IR0:6) = 0 = )7 5)
i=1

can be adopted as the loss function to learn the trainable parameters in DnCNN. R (y) represents
the residual mapping and {(y,-,x,-)}fi | represents N noisy-clean training image patch pairs. In a
nutshell, the DnCNN model has two main features: the residual learning formulation is adopted to
learn R(y), and batch normalization is incorporated to speed up training and boost the denoising
performance.

2.2. Trained networks: incSRCNN, N2N, and MIRNet

Then, we constructed and trained a simple network which is a modified version of the super-
resolution convolutional neural network (SRCNN) [33,34], namely incSRCNN. Our architecture
is inspired by both the inception and the SRCNN networks, therefore we call it incSRCNN. The
architecture of this network is shown in Fig. 3. Like the SRCNN, the proposed network consists
of three layers; however, it is implemented as a denoising task that outputs the same input size.
The input image is convolved in the first layer with three different kernel sizes 3, 5, and 9 into 192
feature maps. The second layer then applies a 11 kernel to condense to 64 feature maps. Finally,
the third layer uses a 3x3 kernel to construct the output image. All layers involve the ReLu
activation function. We used the mean absolute error as a loss function between the original HQ
image and the output from the trained networks and the weights in the network layers are updated
using the Adam optimizer with a learning rate equal to 3e™.
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Fig. 3. The transfer learning-based approach via DnCNN and the trained deep learning
networks via Noise2Noise, MIRNet, and our proposed deep learning networks (incSRCNN).
On top of the figure, we used a pre-trained network, DnCNN, to predict MM images
with higher quality. Moreover, the Noise2Noise and The MIRNet networks are trained
using augmented neck and head tissue images. The architecture of our proposed network,
incSRCNN, is shown at the bottom. This network represents a modified version of the
SRCNN and is inspired by the inception network. Initially, the first layer convolves the input
image with different kernel sizes into 192 feature maps. The second layer then applies a
1x 1 kernel to condense to 64 feature maps. Finally, the third layer uses a 3 X 3 kernel to
construct the output image.

Afterward, we aimed to compare our simple architecture with more complex ones. Therefore,
we chose well-known networks: the Noise2Noise (N2N) and the MIRNet architecture which are
usually implemented for denoising tasks. Briefly, N2N and MIRNet architectures consist of deep
convolutional neural networks (CNN) layers. The N2N network learns to remove noise from a
noisy image by training on pairs of noisy images, effectively learning to denoise without ever
seeing a clean image. On the other hand, the MIRNet network uses a multi-scale architecture
to capture both local and global image features, and incorporates a feature fusion module to
combine information from different scales (we refer readers for more details about N2N and
MIRNet to the Ref. [30] and the Refs. [31,32], respectively).

3. Data acquisition, description, and workflow
3.1. Data acquisition and description

The data used for developing the denoising method has been acquired using a laser scanning
microscope (LSM510, Zeiss, Germany) equipped with a ps-laser system for coherent anti-
Stokes Raman scattering (CARS), second harmonic generation (SHG), and two-photon excited
fluorescence (TPEF) microscopy as described in detail previously [42]. Briefly, the sample is
illuminated with two spatially and temporally synchronized laser pulse trains of ps-pulse duration.
The difference frequency of both lasers matches the symmetric CH2 stretching vibration at
2850 cm™!. The pump laser is operating at 672.5 nm, the Stokes laser is at 832 nm. The specimen
is illuminated through a 20x planapochromatic objective (Zeiss, Germany, NA = 0.8) using a
50 mW pump and 70 mW of Stokes power. CARS and SHG signals are collected and detected in
forward direction by PMT detectors. The signals are split by a 514 nm dichroic longpass mirror.
The CARS signal is detected using a 550 nm bandpass filter, the SHG signal using a 415 nm
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bandpass filter. The TPEF signal is collected in epi-direction through the illumination objective
and reflected by a 600 nm longpass dichroic mirror to the PMT detector. In front of the PMT
the TPEF signal is filtered using a 650 nm shortpass filter and a 458/64 nm bandpass filter (both
Semrock, USA). All analyzed images have been acquired using 1.6 ps pixel dwell time, a field of
view of 450 um and 512 pixels length. For HQ images 16 frames have been averaged, for LQ
images four frames averaging was applied.

The data represent the head and neck tissue of a mouse, with ten positions measured using
the nonlinear multimodal imaging technique. The nonlinear multimodal imaging combines
three modalities that are simultaneously excited using a 672.5 nm pump and 832 nm Stokes
and detected at 550 nm (CARS), 458 nm (TPEF), and 415 nm (SHG). In this manuscript, we
utilized high-quality (HQ) and (experimental) low-quality (LQ) images acquired within 8s and 2s,
respectively. The HQ and LQ images were obtained by averaging 16 and 4 frames, respectively,
and each has a spatial resolution of 512x512 pixels for a 450x450 um? tile scan which is
approximately equal to 0.88 pm/pixel.

3.2. Workflow

As mentioned before, we compared various denoising methods; the phase retrieval via GS, the
median filter method, the pre-trained deep network, DnCNN, the N2N network, the MIRNet
network, and our incSRCNN network. In the GS algorithm, each modality of the nonlinear
multimodal imaging is processed independently. Since this algorithm depends greatly on knowing
the source object, a Gaussian estimation is incorporated into the algorithm. Similarly, the MF
method is applied directly to each channel of the MM images for a 3 X 3 kernel size. For the
DnCNN network, the pre-trained network was loaded and employed separately on each of the
modalities of the nonlinear multimodal images to predict high-quality images. In the case of
the N2N, the MIRNet, and our proposed network, data augmentation is applied. Before data
augmentation, one image was left aside for testing, and nine were split into 7 for training and 2
for validation. Various techniques can be considered for data augmentation; however, we used
rotation, blurring, and Poisson noise for our medical images. In the analysis, we first created
artificial LQ images by generating Poisson noise from the HQ images. The experiment and the
artificial LQ images are rotated by 90°, 180°, and 270°, and the experiment LQ images were
blurred using a Gaussian filter. The total number of images equals 63 for the training part and 18
for the validation. We simultaneously applied data augmentation for both HQ and LQ images.
In addition, each image was split into 16 patches. Consequently, the total patch images in the
training and validation sets are 1008 and 288 patch images for each channel, respectively. Since
each modality of the nonlinear multimodal imaging techniques measures specific molecular
contributions, for instance, CARS modality explores the molecular distribution of proteins and
lipids, SHG modality highlights collagen distribution in the sample, and TPEF modality identifies
specific molecules like keratin and NADP(H), we considered these channels as independent
images. Accordingly, the total number of patch images equals 3024 and 864 for the training
and validation sets, respectively. However, only the CARS channel is used to train the network
modality with 1008 and 288 images for training and validation sets, respectively. Since the CARS
channel includes more structures while the background is more prominent in both the TPEF and
the SHG modalities.

4. Results

Our analysis was split into two sections; first, we created artificial low-quality (LQ) images by
generating Poisson noise from high-quality images (HQ). These artificial LQ images are created
intentionally of lower quality as our experimental low-quality images are to be used subsequently
in the training of the N2N, the MIRNet, and the incSRCNN deep learning networks. Therefore,
the trained deep learning networks can generalize and cover other measurements with a different
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setup and lower quality. We then evaluated the GS algorithm, the MF method, the pre-trained
DnCNN, the trained N2N, the trained MIRNet, and the trained incSRCNN networks on these
artificial LQ images. We generated Poisson noise from HQ images, which results in an average
PSNR decrease from 19.7 to 16.4. Finally, we tested all these methods on the experimental
LQ image and compared their performances. However, image reconstruction evaluation is a
tricky task, particularly for medical images, and as far as the authors know, no image metric is
(always) recommended. Therefore, we used a panel of image metrics: the peak signal-to-noise
ratio (PSNR), the structural similarity index measure (SSIM), the image correlation coefficient
(ICC) [43], and the mean absolute error (MAE). Briefly, the PSNR is a widely used metric for
measuring the quality of an image which compares the original image x to the reconstructed one
X by calculating the ratio of the peak signal to the noise and it can be formulated mathematically
as follows

J
B 2 2 i) =5GP |- ©)

PSNR(x,) = 10 x log,, | Max: / \/L ;
=1j=1

where [ represents the number of rows of pixels of the image and J is the number of columns of

pixels of the image. SSIM, on the other hand, is used to quantify the similarity of a reconstructed

image to its original one. It compares the luminance, contrast, and structure of the two images,

and it is given by the following equation
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where X is the mean of the original image, X is the mean of the reconstructed image, oy is the
standard deviation of the original image, o is the standard deviation of the reconstructed image,
Ci and C; are two constants, and o4 represents the covariance of the original image x and the
reconstructed one X. ICC measures how well two images are correlated, and it is calculated as
follows

1CC(x.9) = Ty 7. ®)

and finally, MAE measures the average magnitude of the errors between the constructed values
and the original one and it is given by the following formula

1

MAE(x, %) = 7

J
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In addition, we visualized the residual images and the histogram of the residual images.
Moreover, the time for reconstructing one channel by these methods was illustrated in Table S1
in Supplement 1.

First, the GS algorithm is implemented independently on the three channels that form the MM
LQ images. The GS algorithm requires an approximation of the source beam and the LQ image
as input. Therefore, the source beam is represented by Gaussian approximation (its illustration is
shown as X in Fig. 2). A detailed explanation of the GS algorithm is discussed in the method
section. The number of iterations that the algorithm carries on is 50000, and the code was built
using Matlab 2020b (The MathWorks, Natick, MA).

The GS reconstruction of the artificial LQ image, displayed in Fig. 4(c-1), generally preserves
the structure but includes dark regions resulting from the Gaussian estimation. Furthermore,
the overall similarity between the HQ and reconstructed images was significantly low. Since
the CARS channel has a more complex structure than the TPEF and SHG channels where the

background is more prominent, its reconstruction compared to the other two differs dramatically
with an increase from 0.27 to 0.39 in the CARS channel to an increase from 0.17 and 0.28 to 0.53
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and 0.56 in the TPEF and SHG channels, respectively. In addition, although the noise level for
the three channels decreases, only a slight improvement in the PSNR from 14.8 to 14.9 is shown
for the CARS channel. However, the increase in the PSNR reached 21.4 and 21.7 from 16.1 and
18.4 for TPEF and SHG channels, respectively (refer to Table 1 for more details). Moreover, the
SSIM is improved for the three channels. Similar to the PSNR, an increase in the SSIM value
is deduced in the three channels’ reconstruction. For instance, the SSIM for the CARS, TPEF,
and SHG reconstructions increase from 0.27, 0.17, and 0.28 to 0.39, 0.53, and 0.56, respectively.
Furthermore, the average ICC and MAE of the reconstructed image are equal to 0.86 and 0.09,
respectively, while their values for the artificial image were 0.68 and 0.12. For more insights
about the GS reconstructions, the residual images of the HQ and the reconstruction images are
visualized in Fig. S1 in Supplement 1 and compared to the residual images of the HQ and the
artificial LQ images. Although the GS reconstruction was able to reconstruct some parts of the
image compared with the artificial LQ case, various regions are still not well reconstructed. In
addition, we illustrated in Supplement 1 Fig. S2 the histogram of the residual of the reconstructed
image and compared it with the residual of the artificial LQ image. Although the PSNR, SSIM,
ICC, and MAE showed improved values and the histogram of the residual images showed fewer
variations, the reconstructions were poor and revealed darker regions.

Table 1. The PSNR, the SSIM, the ICC, and the MAE between the HQ image and the artificial LQ
image and between the HQ image and the reconstructed images using the GS algorithm, the MF
method, the DnCNN, N2N, MIRNet, and incSRCNN networks

Image Metric  Artificial LQ ~ GS Median Filter =~ DnCNN ~ N2N  MIRNet  incSRCNN
PSNR 14.8 149  20.1 23.0 206  20.1 20.5
SSIM 0.27 039 043 0.59 0.56  0.56 0.54
CARS channel
ICC 0.65 083 0.83 0.90 0.88 0.85 0.89
MAE 0.14 0.15  0.08 0.05 0.07 0.07 0.07
PSNR 16.1 214 220 26.2 222 19.9 22.4
SSIM 0.17 053 037 0.64 0.59 0.57 0.55
TPEF channel
ICC 0.65 0.89  0.86 0.94 0.91 0.80 0.93
MAE 0.12 0.06  0.06 0.03 0.06  0.06 0.06
PSNR 18.4 217 22.0 254 22.1 13.9 21.9
SSIM 0.28 056  0.42 0.77 0.65 0.37 0.57
SHG channel
IcC 0.75 085 0.85 0.93 090 046 091
MAE 0.09 0.06  0.06 0.03 0.05 0.10 0.06
PSNR 16.4 193 213 249 21.6 17.9 21.6
. SSIM 0.24 049 041 0.67 0.60 050 0.56
MM image
ICC 0.68 086  0.85 0.92 090  0.70 091
MAE 0.12 0.09  0.07 0.04 0.06  0.08 0.06

Next, we applied the median filter as a second standard method. The MF reconstruction of
the artificial LQ image, displayed in Fig. 4(c-2), preserves the overall structure of the image.
Although the PSNR, the SSIM, the ICC, and the MAE metrics showed improved values in the MF
reconstruction (refer to Table 1 for more details), the MF method could not completely remove
the noise.

Afterward, we applied a pre-trained network, the DnCNN, to predict the reconstruction of the
artificial MM images. The DnCNN was implemented in Matlab 2020b (The MathWorks, Natick,
MA). Similar to the GS algorithm, the DnCNN network was used independently on each of the
three modalities. The reconstruction of the artificial LQ image is shown in Fig. 4(c-3). The spatial
structures in the image are preserved, and the noise level is reduced. Furthermore, the PSNR has
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Fig. 4. The artificial LQ image with corresponding reconstructions using direct methods via
the GS algorithm, the MF method, and the DnCNN, and the results using trained networks
via the Noise2Noise (N2N), the MIRNet, and the incSRCNN networks. The experimental
HQ and artificial LQ images are displayed in a) and b). The reconstructions of the artificial
LQ image using the GS algorithm, the MF method, the DnCNN network, the N2N network,
the MIRNet network, and the incSRCNN network are shown in part ¢ subpanel 1,2,3,4,5,6,
respectively. At first glance, the DnCNN network represents the HQ image better. On the
other hand, the trained N2N and MIRNet networks show inefficiency in some regions due to
the lack of data. Moreover, the proposed incSRCNN network preserves detailed structures
compared to the smooth region produced by the DnCNN network. Still, some artifacts
were produced, resulting from the small data size used to train the network. All the MM
images represent CARS, TPEF, and SHG modalities as the red, green, and blue channels,
respectively.

increased to 23.03, 26.2, and 25.4 for the CARS, TPEF, and SHG channels from 14.8, 16.1, and
18.4, respectively. In addition, the SSIM has significantly increased from 0.27, 0.17, and 0.28 to
0.59, 0.64, and 0.77 for the CARS, TPEF, and SHG channels, respectively. Consequently, the
overall PSNR and SSIM improved from 16.4 and 0.24 to 24.9 and 0.67, respectively. Furthermore,
the average ICC and MAE of the reconstructed image are equal to 0.92, and 0.04 while their
values for the artificial image were 0.68, and 0.12. Figure 5 shows three regions of interest
(ROIs) for all reconstruction algorithms. The colors in the DnCNN reconstruction are well
conserved, and the noise level in the reconstruction was reduced significantly. However, smoothed
structures are displayed in these ROIs, which is critical for biomedical applications because
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Fig. 5. Region of interests (ROIs) of the HQ image, the artificial LQ image, and its
reconstructions using the GS algorithm, the MF method, the DnCNN, the N2N, the
MIRNet, and the incSRCNN networks. The GS algorithm produces blurry images with dark
spots/regions. Moreover, the MF method is not able to remove completely the noise. In the
DnCNN reconstruction, some fine structures were lost while these structures were preserved
using the incSRCNN network. However, some black dots were produced as artifacts using
the trained N2N, MIRNet, and incSRCNN networks, which resulted from the small data size
used to train the network. All the MM images represent CARS, TPEF, and SHG modalities
as the red, green, and blue channels, respectively.

some important information may be compromised and lost, affecting the diagnosis of tissue
abnormalities and diseases. In addition, the residual images per channel between the HQ image
and the reconstructed one are shown in Supplement 1 Fig. S1. In this figure, most of the values
across the image are zero, which means that the DnCNN was able to reconstruct the exact value
of the high-quality image.

Moreover, the histogram of the residual images between the HQ image and the DnCNN
reconstruction in Supplement 1 Fig. S2 significantly reduces the values compared with the
artificial LQ case. Therefore, the DnCNN reconstructed a good representation of the HQ image
successfully.
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Fig. 6. The experimental LQ image with corresponding reconstructions using direct
methods via the GS algorithm, the MF method, and the DnCNN and trained networks via
the Noise2Noise (N2N), the MIRNet, and the incSRCNN networks. The experimental HQ
and LQ images are displayed in a) and b), respectively. The reconstruction of the experiment
LQ image using the GS algorithm, the MF method, the DnCNN network, the N2N network,
the MIRNet network, and the incSRCNN network is shown in part ¢ / subpanel 1,2,3,4,5,6,
respectively. At first glance, the DnCNN network better represents the HQ image. However,
the N2N, MIRNet, and incSRCNN reconstructions preserve detailed structures while the
DnCNN reconstruction displays smoothed structures. All the MM images represent CARS,
TPEF, and SHG modalities as the red, green, and blue channels, respectively.

Finally, we evaluated our proposed network (incSRCNN) on the same artificial LQ images and
compare it with two deep learning networks via the Noise2Noise and MIRNet networks that were
trained with the same augmented MM images. The detailed architecture was described in the
method section. The training of the network was performed by minimizing the mean absolute
error (MAE)-based loss between the HQ images and the output of the incSRCNN network. The
Adam algorithm was used for the optimization with a learning rate of 3e™*. A total of 1008
and 288 coupled HQ and LQ images were used for the training and the validation, respectively;
refer to Supplement 1 Table S2 for more details. All computations were done using Google
Colab. The total number of parameters to be trained is 20,481 (refer to Fig. S7 and Fig. S8 for
more details about the architecture and parameters of the incSRCNN network). The training and
prediction time for our architecture is around 10 minutes and 7 seconds, respectively. However,
the N2N and MIRNet networks require around 48 minutes and 3 hours in the training phase and
33 and 68 seconds for the reconstruction of the image (refer to Table S1 for more details). We
assessed different cases to train the network; three independent incSRCNN on each modality, one
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Fig. 7. Region of interest (ROIs) of the HQ image, the experimental LQ image, and its
constructions using the GS algorithm, the MF method, the DnCNN, the N2N, the MIRNet,
and the incSRCNN networks. The GS algorithm produces a dark region due to the Gaussian
estimation. Moreover, the MF reconstruction could not remove the noise completely. In the
DnCNN reconstruction, some fine structures are lost while preserved using the incSRCNN
network. However, some dark dots were produced, resulting from the lack of data used to
train the 3 networks; N2N, MIRNet, and incSRCNN. All the MM images represent CARS,
TPEF, and SHG modalities as the red, green, and blue channels, respectively.

incSRCNN comprising all channels as separate data, and one incSRCNN that includes only the
CARS channel. We found out that training with only the CARS channel produces better results.
The training time of this network is approximately 10 minutes compared to 1 hour in the first and
second cases.

The incSRCNN reconstruction of the artificial LQ image is shown in Fig. 4(c-6). While
the N2N and MIRNet reconstructions are shown in the same Fig. 4(c-4 and 5, respectively).
The spatial structures and the color in the images are preserved, and the noise level is reduced.
Furthermore, the PSNR has increased to 20.5, 22.4, and 21.9 for the CARS, TPEF, and SHG
channels from 14.8, 16.1, and 18.4, respectively. In addition, the SSIM has significantly increased



Research Article Vol. 14, No. 7/1 Jul 2023/ Biomedical Optics Express 3271 |

Biomedical Optics EXPRESS o~

from 0.27, 0.17, and 0.28 to 0.54, 0.55, and 0.57 for the CARS, TPEF, and SHG channels,
respectively. Consequently, the overall PSNR and SSIM improved from 16.4 and 0.24 to 21.6 and
0.56, respectively. Furthermore, the average ICC and MAE of the reconstructed image are equal
to 0.91, and 0.06, while their values for the artificial image were 0.68, and 0.12. Figure 5 shows
three regions of interest (ROIs) of all reconstructions. The colors in the incSRCNN reconstruction
are well conserved, and the noise level in the reconstruction was reduced significantly. In addition,
the residual images per channel between the HQ image and the reconstructed one are shown in
Supplement 1 Fig. S1. In this figure, a significant reduction of the STD values in the residual
images from 0.2, 0.2, and 0.1 for CARS, TPEF, and SHG of the artificial LQ case, respectively to
0.08, 0.06, and 0.06 for CARS, TPEF, and SHG of the incSRCNN case, respectively.

Moreover, the histogram of the residual images between the HQ image and the incSRCNN
reconstruction in Supplement 1 Fig. S2 significantly reduces the values compared with the
artificial LQ case. Therefore, the incSRCNN reconstructed a good representation of the HQ
image successfully. Compared to the other more complex deep learning networks N2N and
MIRNet, all three networks produced black spots which resulted from the lack of data in the
training procedure.

The next step is to assess the six methods on the experimental LQ MM image. First, we
evaluated the GS algorithm on the experimental LQ image with the exact source estimation used
for the artificial LQ image.

In the experimental LQ image reconstruction using the GS algorithm, the PSNR for the TPEF
channel increased from 20.0 to 20.1. However, the PSNR decreased from 19.0 and 20.1 to 14.9
and 20.1 in the CARS and SHG channels, respectively. In addition, the SSIM improved for only
the TPEF channel but worsened in the CARS and the SHG channels. All characteristics are given
in Table 2. Furthermore, the average ICC showed an improved correlation value from 0.78 to
0.80, but the average MAE showed an increased value. It is worth noticing that the worsened
values are mainly related to the CARS channel reconstruction since the other channels presented
acceptable results. Moreover, the GS reconstruction of the experimental LQ image does not
differ from the artificial LQ reconstruction, which can be deduced from the residual images and
the residual histogram in Supplement 1 Fig. S3 and Fig. S4, respectively. The reason is that the
algorithm converged to a local minimum and could not improve more.

Then, in the experimental LQ image reconstruction using the MF method, the PSNR for
the CARS reconstruction decreased from 19.0 to 18.8. In addition, the SSIM of the CARS
reconstruction also dropped to 0.54 from 0.56. We could conclude that the experimental LQ
image is already in a high-quality condition that even a filter-based method could not improve the
quality of the CARS channel.

Afterward, we tested the performance of the DnCNN in the experimental LQ image. In
Fig. 6(c-3), we showed the reconstruction using the DnCNN network, where the spatial structure
in the image is preserved, and the noise level is slightly reduced. In Table 2, we compared the
PSNR, SSIM, ICC, and MAE between the DnCNN reconstructions and the HQ image with the
PSNR, SSIM, ICC, and MAE between the experiment LQ image and the HQ image. Compared
to the experiment LQ image, we deduced a slight improvement in the PSNR, SSIM, ICC, and
MAE values per channel and overall, when using the DnCNN network. In Fig. 7, three ROIs
showed a reduction in the noise level. Like the artificial case, smoothed regions were produced,
which might cause the removal of important features that are highly sensitive in the diagnosis of
diseases and abnormalities. In addition, we compared the residual images per channel of the
DnCNN reconstructions with the residual images of the experiment LQ image in Supplement 1
Fig. S3. In this figure, almost similar residual values to the experimental LQ case can be detected.
Furthermore, we visualized the histogram of the residual images of the DnCNN reconstruction
and the experiment LQ images in Supplement 1 Fig. S4.


https://doi.org/10.6084/m9.figshare.22591561
https://doi.org/10.6084/m9.figshare.22591561
https://doi.org/10.6084/m9.figshare.22591561
https://doi.org/10.6084/m9.figshare.22591561
https://doi.org/10.6084/m9.figshare.22591561

Research Article Vol. 14, No. 7/1 Jul 2023/ Biomedical Optics Express 3272 |

Biomedical Optics EXPRESS o~

Table 2. The PSNR, the SSIM, the ICC, and the MAE between the HQ and the experimental LQ
images and between the HQ and the reconstructed images using the GS algorithm, the MF method,
the DnCNN, N2N, MIRNet, and incSRCNN networks

Image Metric LQ GS Median Filter DnCNN N2N MIRNet incSRCNN
PSNR 19.0 14.9 18.8 19.2 17.7 17.8 17.2
SSIM 0.56 0.38 0.54 0.60 0.54 0.54 0.53
CARS channel
ICC 0.86 0.82 0.87 0.88 0.85 0.86 0.86
MAE 0.09 0.15 0.09 0.08 0.11 0.11 0.11
PSNR 20.0 20.1 20.6 20.8 18.5 18.9 18.6
SSIM 0.46 0.54 0.60 0.62 0.51 0.44 0.47
TPEF channel
ICcC 0.76 0.80 0.82 0.82 0.79 0.77 0.79
MAE 0.06 0.06 0.06 0.05 0.09 0.08 0.09
PSNR 20.1 20.1 20.7 20.7 19.1 19.7 19.6
SSIM 0.63 0.54 0.68 0.68 0.60 0.62 0.60
SHG channel
ICC 0.73 0.77 0.78 0.77 0.72 0.74 0.76
MAE 0.05 0.07 0.04 0.05 0.06 0.06 0.06
PSNR 19.7 18.3 20.0 20.2 18.4 18.8 18.4
. SSIM 0.55 0.49 0.60 0.64 0.55 0.53 0.54
MM image
ICC 0.78 0.80 0.82 0.82 0.79 0.79 0.80
MAE 0.07 0.09 0.06 0.06 0.09 0.08 0.09

Finally, we tested the performance of the incSRCNN in the experimental LQ image and
compare it with the N2N and MIRNet networks. In Fig. 6(c-4, 5, 6), we showed the reconstruction
using the N2N, the MIRNet, and our proposed network, where the spatial structures and the color
in the image are preserved; however, the noise level is slightly reduced. In addition, we compared
in Table 2 the PSNR, SSIM, ICC, and MAE between the three trained network reconstructions
and the HQ image with the PSNR, SSIM, ICC, and MAE between the experiment LQ image and
the HQ image. Compared to the experiment LQ image, although the average ICC improved, the
PSNR and SSIM values per channel overall decreased. In Fig. 7, our proposed network preserves
the color and spatial structures. However, the decrease mentioned above might result from the
small data size that the network failed to estimate the values in some areas indicated by the arrow
in the figure. However, we continued to assess this matter by checking the intensity values across
an arbitrary region and evaluating the incSRCNN network on other noisy experimental LQ data.
These noisy LQ data were derived by generating Poisson noise from the experimental LQ images.
The results are illustrated in Supplement 1 Fig. S5 and Fig. S6. Figure S5 shows the intensity
values for the HQ, LQ, and reconstructed images across the specified region in the image on
the top left of the figure. The intensity values in GS differ totally from those in the LQ image,
while the deep learning methods maintained a similar trend. However, the smoothed nature of
the DnCNN reconstruction can be reflected by showing fewer details than in the incSRCNN
reconstruction. Besides, the incSRCNN reconstructions for both noisy experimental LQ images
illustrated in Figure S6 showed improvements in terms of PSNR, SSIM, ICC, and MAE values.
In addition, we compared the residual images per channel of the incSRCNN reconstructions with
the residual images of the experiment LQ image in Supplement 1 Fig. S3. In this figure, almost
similar residual values to the experimental LQ case can be detected. Furthermore, we visualized
the histogram of the residual images of the DnCNN reconstruction and the experiment LQ images
in Supplement 1 Fig. S4. We previously discussed the performance of each method compared
to the artificial and experimental LQ images. The GS reconstruction shows similar but poor
performance for both artificial and experimental LQ images. The GS reconstructions include
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dark regions, and the algorithm showed limited abilities even in noiseless settings. In addition,
it seems that the optimization algorithm of the GS method converges to a local minimum that
causes poor reconstructions. However, the DnCNN and the incSRCNN reconstructions preserved
the colors and detailed structures. Both networks performed well in the artificial LQ case, but the
DnCNN produced smoothed regions critical for medical applications. Our proposed network
consists of a simple architecture that only uses the CARS channels and predicts the other two
channels. Similar to the artificial case, the DnCNN and incSRCNN networks performed better.
These two networks preserve the color and the spatial structures of the image. However, the
DnCNN network produced smoothed region, which is a drawback compared to our proposed
network that shows a slight reduction in the noise due to the lack of data that the network could
not train some regions. We additionally trained two other networks with deeper layers; the N2N
and MIRNet networks. We showed that the lack of data affects the reconstruction also in these
two networks.

5. Generalizability

The results explained previously involve only one image position where all the methods were
either applied directly on this image or trained using the remaining 9 images and then using
the trained networks to reconstruct this particular image. Therefore, in this section, we want to
evaluate the PSNR, SSIM, ICC, and MAE values in two different ways: patch-wise analysis
and cross-validation analysis. Both methods are utilized to investigate the variability of the
reconstructions within an image (patch-wise analysis) and between images (cross-validation). In
the patch-wise analysis, one single testing image of size 512 x 512 was used for validation. In
this method, the PSNR, SSIM, ICC, and MAE are not evaluated on the whole reconstruction
from both the direct methods and the trained networks, but the markers are calculated for 16
patches of size 128 x 128. This means that PSNR, SSIM, ICC, and MAE are calculated per patch
resulting in 16 values per metric and then the average and standard deviation of these metrics
are computed and visualized in Table 3 and Table 4. The second analysis is the cross-validation
analysis and one MM image was left out within the cross-validation loop. In this study, a total of
10 MM images of size 512 x 512 were predicted and each of these images was reconstructed
using the direct methods: the GS algorithm, the MF method, and the DnCNN network. Then, the
PSNR, SSIM, ICC, and MAE per reconstruction were calculated, and finally, the average and the
standard deviation of these metrics were computed. While for training the N2N, MIRNet, and
incSRCNN networks, 10 networks were trained in which one image is left for testing purposes
and the remaining 9 images were used for training of the N2N, MIRnet, and incSRCNN network.
In the end, the aforementioned metrics are calculated on each testing image, and the average and
standard deviation of these metrics is computed and visualized in Table 5 and Table 6.

First, the results of the patch-wise analysis for both artificial and experimental LQ images are
summarized in Table 3 and Table 4, respectively. The DnCNN in terms of metrics showed a
higher improvement for the artificial and experimental reconstructions. While the incSRCNN
in the experimental reconstruction showed less variation. These results are consistent with the
overall calculation for both artificial and experimental LQ reconstructions.

For the second method, the results of the cross-validation analysis for both artificial and
experimental LQ images are summarized in Table 3 and Table 4, respectively. We used in this
part the leave one MM image out cross-validation. For the direct methods, the reconstruction is
implemented directly on each channel for the 10 MM images, and the average of the evaluation
metrics is calculated. However, for the trained networks, the analysis consists of leaving one
image for testing purposes and using the remaining 9 images to train the N2N, MIRNet, and
incSRCNN networks. Afterward, these trained networks were used to reconstruct the testing
MM image. Furthermore, the evaluation metrics were constructed and the average of the 10
cases is calculated and summarized in the tables below for the artificial and the experimental LQ
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Table 3. The average PSNR, SSIM, ICC, and MAE between the HQ and the artificial LQ images and
between the HQ and the reconstructed images using the GS algorithm, the MF method, the DnCNN,

N2N, MIRNet, and incSRCNN networks for the patch wise analysis

Image Metric  Artificial GS Median DnCNN N2N MIRNet  incSRCNN
LQ Filter
PSNR 14.8+0.68 153+196 203+1.21 23.4+2.09 209+161 205+2.01 20.7+1.21
CARS SSIM  0.27+0.08 0.39+0.04 043+0.06 0.59+0.03 0.56+0.03 0.56+0.03 0.54+0.03
channel ICcC 0.59+0.01 0.78+0.03 0.77+0.01 0.86+0.01 0.85+0.01 0.82+0.01 0.85+0.01
MAE 0.14+0.09 0.15+0.07 0.08+0.08 0.05+0.05 0.07+0.04 0.07+0.04 0.07+0.05
PSNR 162+1.02 22.1+2.67 221+1.13 26.8+237 227+2.00 21.8+329 225+1.18
TPEF SSIM  0.17+0.04 0.53+0.04 037+0.04 0.64+0.04 0.59+0.04 0.57+0.05 0.55+0.02
channel ICC 0.54+0.01 0.80+0.02 0.74+0.01 0.88+0.01 0.87+0.01 0.79+0.02 0.86+0.01
MAE 0.12+0.13 0.06+0.11 0.06+0.13 0.03+0.07 0.06+0.07 0.06+0.14 0.06+0.09
PSNR 185+1.08 223+2.33 222+150 261+243 226+195 141+1.62 222+1.72
SHG SSIM  0.28+0.09 0.56+0.04 042+0.07 0.77+0.04 0.65+0.04 0.38+0.09 0.57+0.02
channel ICC 0.70+0.01 0.81+0.02 0.80+0.01 091+0.01 0.88+0.01 040+0.01 0.88+0.01
MAE 0.09+0.09 0.06+0.06 0.06+0.09 0.03+0.03 0.05+0.04 0.10+0.20 0.06+0.05
PSNR 165+0.92 199+232 21.5+1.28 254+230 22.1+1.85 188+231 21.8+1.37
MM SSIM  0.24+0.07 0.49+0.04 041+£0.06 0.66+0.04 0.60+0.04 0.50+0.06 0.56=+0.02
image ICC 0.61+£0.01 0.80+0.02 0.77+0.01 0.88+0.01 0.87+0.01 0.67+0.01 0.86+0.01
MAE  0.12+0.11 0.09+0.08 0.07+0.10 0.04+0.05 0.06+0.05 0.08+0.13 0.06+0.06

Table 4. The average PSNR, SSIM, ICC, and MAE between the HQ and the experimental LQ images
and between the HQ and the reconstructed images using the GS algorithm, the MF method, the
DnCNN, N2N, MIRNet, and incSRCNN networks for the patch wise analysis

Image Metric LQ GS Median DnCNN N2N MIRNet  incSRCNN
Filter
PSNR 194+188 153+2.04 192+2.15 19.6+2.02 18.0+1.53 18.0+1.50 17.4+1.58
CARS SSIM  0.56+0.19 038+0.06 054+0.12 0.60+0.17 0.54+0.19 0.54+0.19 0.53+0.19
channel Icc 0.79+0.02 0.75+0.03 0.82+0.02 0.81+0.02 0.78+0.02 0.78+0.02 0.79 +0.02
MAE  0.09+0.16 0.15+0.12 0.09+0.12 0.08+0.14 0.11+0.16 0.11+0.16 0.11+0.16
PSNR 22.0+3.63 22.1+3.88 229+4.02 234+4.19 19.6+2.89 202+3.05 19.7+2.92
TPEF SSIM  046+0.10 0.54+0.11 0.60+0.13 0.62+0.13 0.51+0.11 044+0.10 0.47+0.10
channel IccC 0.72+0.03 0.77+0.03 0.81+0.03 0.83+0.03 0.78+0.03 0.73+0.03 0.76+0.03
MAE 0.06+0.17 0.06+0.16 0.06+0.16 0.05+0.16 0.09+0.18 0.08+0.17 0.09+0.17
PSNR 223+4.67 21.1+3.01 225+429 23.1+495 20.6+3.70 21.5+424 21.1+3.74
SHG SSIM  0.63+0.19 0.54+0.12 0.68+0.17 0.68+0.18 0.60+0.16 0.62+0.18 0.60+0.16
channel Icc 0.74+0.03 0.75+0.02 0.79+0.02 0.78+0.03 0.74+0.03 0.75+0.03 0.77+0.03
MAE 0.05+0.16 0.07+0.12 0.04+0.14 0.05+0.16 0.06+0.14 0.06+0.16 0.06+0.15
PSNR 21.2+3.39 195+298 21.5+349 22.0+3.72 194+271 199+293 194+2.75
MM SSIM  0.55+0.16 049+0.10 0.60+0.14 0.64+0.16 0.55+0.15 0.53+0.16 0.54+0.15
image ICC 0.75+0.03 0.76+0.03 0.81+0.03 0.81+0.02 0.76+0.02 0.75+0.02 0.77 +0.02
MAE 0.07+0.16 0.09+0.13 0.06+0.14 0.06+0.15 0.09+0.16 0.08+0.16 0.09+0.16
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Table 5. The average PSNR, SSIM, ICC, and MAE between the HQ and the artificial LQ images and
between the HQ and the reconstructed images using the GS algorithm, the MF method, the DnCNN,
N2N, MIRNet, and incSRCNN networks for the cross-validation analysis

Image Metric  Artificial GS Median DnCNN N2N MIRNet  incSRCNN
LQ Filter

PSNR 14.6+0.31 149+131 202+0.54 23.6+095 21.8+090 21.7+131 21.7+0.89
CARS SSIM  0.23+0.05 0.37+0.04 0.39+0.04 0.55+0.04 0.54+0.03 0.54+0.04 0.52+0.03
channel ICcC 0.56+0.07 0.76+0.03 0.75+0.00 0.86+0.01 0.86+0.01 0.85+0.01 0.84+0.01
MAE 0.15+0.01 0.16+0.07 0.08+0.07 0.05+0.04 0.06+0.03 0.06+0.04 0.06+0.04
PSNR 17.6+098 21.9+230 228+1.00 27.3+2.19 223+1.84 21.1+273 22.8+2.01
TPEF SSIM  0.20+0.07 0.56+0.05 0.41+0.07 0.75+0.08 0.70+0.07 0.52+0.07 0.65+0.05
channel ICC 0.67+0.13 0.87+0.01 0.84+0.01 094+0.01 0.87+0.00 0.72+0.01 0.91+0.01
MAE 0.10£0.01 0.06+0.05 0.05+0.09 0.03+0.03 0.06+0.02 0.07+0.06 0.06+0.02
PSNR 18.7+0.68 21.2+1.59 229+092 268+198 232+173 20.1+501 22.7+0.95
SHG SSIM  0.25+0.05 0.52+0.07 041+0.04 0.75+0.04 0.66+0.07 0.52+0.17 0.54+0.04
channel ICC 0.67+0.11 0.83+0.02 0.79+0.00 091+0.01 0.87+0.01 0.72+0.04 0.87+0.01
MAE 0.09+0.01 0.07+0.06 0.05+0.11 0.03+0.04 0.05+0.07 0.07+0.23 0.05+0.06
PSNR 179+0.66 193+1.74 22.0+0.82 259+1.71 224+149 209+3.02 224+128
MM SSIM  0.23+0.06 0.48+0.05 040+0.05 0.68+0.05 0.63+0.06 0.53+0.09 0.57+0.04
image Icc 0.63+0.10 0.82+0.02 0.79+0.01 0.90+0.01 0.87+0.01 0.76+0.02 0.87+0.01
MAE 0.11+0.01 0.10+0.06 0.06+0.09 0.04+0.04 0.06+0.04 0.07+0.11 0.06+0.04

Table 6. The average PSNR, SSIM, ICC, and MAE between the HQ and the experimental LQ images
and between the HQ and the reconstructed images using the GS algorithm, the MF method, the
DnCNN, N2N, MIRNet, and incSRCNN networks for the cross-validation analysis

Image Metric LQ GS Median DnCNN N2N MIRNet incSRCNN
Filter

PSNR 18.6+131 149+136 189+137 191+138 142+1.73 12.8+223 153+0.87
CARS SSIM  0.39+0.08 0.33+0.05 044+0.06 047+0.07 027+0.13 0.17+0.17 0.39+0.07
channel ICC 0.72+0.10 0.73+0.03 0.78+0.01 0.78+0.01 0.52+0.03 0.30+0.04 0.79+0.02
MAE  0.09+0.01 0.16+0.09 0.09+0.08 0.09+0.08 0.16+020 0.18+0.23 0.15+0.07
PSNR 225+3.19 21.2+2.67 23.0+3.56 234+393 185+244 155+431 17.7+1.66
TPEF SSIM  0.58+0.11 0.60+0.04 0.72+0.09 0.74+0.09 0.59+0.11 0.35+0.20 0.35+0.16
channel ICC 0.82+0.06 0.83+0.02 0.87+0.01 0.87+0.01 0.74+0.02 0.52+0.05 0.85+0.02
MAE  0.05+0.01 0.06+0.05 0.04+0.05 0.04+0.05 0.09+0.07 0.12+0.18 0.11+0.06
PSNR 229+2.63 203+1.17 234+279 234+273 202+£2.63 158+449 188+1.53
SHG SSIM  0.62+0.09 0.52+0.05 0.67+0.09 0.68+0.08 0.59+0.10 0.38+0.18 0.27+0.15
channel ICC 0.76+£0.07 0.78+0.02 0.80+0.01 0.79+0.01 0.68+0.02 0.43+0.04 0.78+0.02
MAE  0.04+0.01 0.08+0.06 0.04+0.05 0.04+0.06 0.06+0.07 0.10+0.15 0.09+0.05
PSNR 21.3+2.38 188+1.73 21.8+257 22.0+2.68 17.6+2.27 147+3.68 17.3+1.36
MM SSIM  0.53+0.09 048+0.05 0.61+0.08 0.63+0.08 048+0.11 0.30+0.18 0.34+0.12
image ICC 0.77+0.07 0.78+0.02 0.82+0.01 0.81+0.01 0.65+0.02 042+0.04 0.81+0.02
MAE 0.06+0.01 0.10+£0.06 0.06+0.06 0.06+0.06 0.10+0.12 0.13+0.19 0.12+0.06
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images. The DnCNN in terms of metrics showed a higher improvement for the artificial and
experimental reconstructions. While the incSRCNN network in the artificial and experimental
reconstruction showed less variation.

6. Conclusion

The multimodal imaging approach (MM), which combines the CARS, the TPEF, and the SHG
modalities provide information on the structure of the measured tissue and its components.
However, the MM approach offers high-quality images only, when they are measured longer
compared to faster MM image measurements, which results in MM images being distorted
with noise and other artifacts. Therefore, image denoising techniques are helpful when fast
measurements are needed or carried out. However, image denoising techniques feature the
drawback that a suitable method needs to be chosen for different settings, which varies between
application scenarios. In this context, we compared two classical methods; the median filter (MF)
and the phase retrieval method via Gerchberg-Saxton (GS) with two deep learning approaches.
The first approach is to use transfer learning via the pre-trained network namely DnCNN and
the second approach is to use augmented MM images to train a deep learning network. In this
context, we trained three networks; the N2N network, the MIRNet network, and our built-in
network the incSRCNN.The data consists of MM images of the neck and head tissue of a mouse.
First, we evaluated the GS algorithm, the MF method, the DnCNN, the N2N, the MIRNet, and
the incSRCNN networks on artificial LQ images. Afterward, we tested all these methods on an
experimental LQ image.

The artificial LQ image was constructed by generating Poisson noise from the HQ image. The
GS algorithm of the artificial LQ image showed poor reconstruction, where dark regions are
produced due to the Gaussian estimation used to describe the input beam. In addition, the MF
reconstruction could not remove completely the noise. However, the DnCNN and the incSRCNN
reconstructions preserve the color and the spatial structures in the image and improve the PSNR,
SSIM, ICC, MAE, and STD compared to the artificial LQ image. However, the DnCNN produced
smoothed region that might cause a compromise in the diagnosis of diseases and abnormalities.
When comparing our incSRCNN network with the trained N2N and MIRNet networks, we
concluded that the incSRCNN reconstruction is better since more black spots are produced by
the MIRNet.

Afterward, we compared the performance of the six methods on the experimental LQ image.
Like the artificial case, the GS algorithm showed poor performance, the MF showed good
reconstruction, and the DnCNN network preserved the color and spatial structures in the images,
but smoothed regions were produced. However, the incSRCNN networks maintained the color
and the spatial structures in the image and did not produce smoothed areas. However, our
proposed network showed a slight decrease in the PSNR, which resulted from the lack of data. In
conclusion, a priori knowledge of the beam source is vital for the GS reconstruction, and the
algorithm has limited recovery abilities even in a noiseless setting.

In summary, deep learning networks produced very promising results. However, the DnCNN
network preserved the color and spatial structures of the image but produced smoothed regions,
resulting in the loss of relevant information. However, our proposed network, the incSRCNN,
consists of simple architecture, and it reconstructs the complex structures of the testing image
and shows good PSNR than the other standard methods. Nevertheless, the incSRCNN network
produced some artifacts represented by arrows in the zoomed figures, resulting from the lack
of data used to train the network. It is worth mentioning that in all implemented methods the
SSIM was around 0.6 which is quite low and this fact needs more in-depth analysis that might
suggest the best evaluation metrics that can be used for denoising MM images, which we plan
to investigate further as part of our future research. On the other hand, the shorter time to
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reconstruct an HQ image, run on a limited CPU computer, is through the incSRCNN network.
Additionally, only 0.08 second is needed for predicting a patch of the image.
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